ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY & SCIENCES (AUTONOMOUS) M.Tech II-Semester Regular Examinations, May 2016 RF and Microwave Engineering (Communication Systems)

Date:	Time: 3 hours	Max Marks: 60
	Answer ONE Question from each unit	
	All questions carry equal marks	
	All parts of the question must be answered at one place only	,

<u>Unit-I</u>

 a) What are the main concepts we need to master design an RF or a microwave circle b) Explain the merits and demerits of RF and microwave in detail. 	:uit? (6M) (6M)
or	()
2) a) How does a two conductor transmission line behave at low and high frequencies	(6M)
b) Explain in detail the design considerations of low RF circuits	(3M)
c)List out properties of RF and Microwaves.	(3M)

<u>Unit-II</u>

a) Using the resonance method, design an impedance matching network that will block the flow of DC from the load, as shown in figure below, assume f=1000MHz
 (6M)

- b) Calculate the plot the voltage gain magnitude and phase if (6M)
- i) the shunt element is the below figure is a perfect capacitor
- ii) the shunt element in the below figure is a perfect inductor

a) Design resonant circuit that operates between Rs=50Ω and RL= 2000Ω, with a Q=10 at the center frequency fo=50MHz. The inductor has a Qc-100 at 100MHz. You may use a tapped C-transformer to achieve the desired Q for the circuit shown below in Figure. (6M)

b)	Explain in detail analysis of a circuit in phasor Domain	(4M)
c)	Write about three element matching in brief.	(2M)

<u>Unit-III</u>

- 5) a) Explain the method of determination of input impedance (Zin) using a know load (ZL) and reflection coefficient. (6M)
 - b) Find out impedance at 100MHz for the circuit shown in figure below (6M)

a) Discuss in detail any two application of Smith Chart with clear explanation (6M)
 b) Consider a transmission line (Zo)= 15+j10Ω, as show below in figure below. Calculate the input impedance of the line where the shunt open stub is located a distance of d=0.044λ from the load and has a length of I=0.14λ. (6M)

a) Explain the steps in minimum – Noise multistage amplifier design.
 b) Design a microwave transistor amplifier for maximum gain using BJT whose s-parameters in a 50Ω systems are
 (6M)

S =	0.7∠-160	0	
	5∠85	0.5∠-20	
	Or		

8) a) Explain about Maximum gain amplifier design(6M)b) Discuss the different types of microwave power combines(6M)

<u>Unit-V</u>

9)	a)Explain the design procedure for transistor oscillator	(6M)
	b) Write about frequency tunable oscillator	(6M)

Or

10) a) Describe a typical microwave oscillator circuits for use in communication applications. (6M)b) Describe operation of Gunn diode oscillator (6M)
